If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+42t=0
a = -4.9; b = 42; c = 0;
Δ = b2-4ac
Δ = 422-4·(-4.9)·0
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-42}{2*-4.9}=\frac{-84}{-9.8} =8+3.5/6.125 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+42}{2*-4.9}=\frac{0}{-9.8} =0 $
| 117.20x0.0925=10.841 | | 4x=48-16x | | 2y=10-4y | | -5x-2=87 | | r/10=1.5 | | 3.2x-2.4=9.6 | | -4*2^-k=-18 | | 6/2x+8=1/5x+9 | | 103+55=x | | 55+103=x | | x+55=103 | | x+x=99 | | 3x-12=-42 | | X2-10x+22=-2 | | 8(6-u)=136 | | X(2x-225)=180 | | 3x^2+15=63 | | 17x-3=14x-37 | | i/5+9=15 | | -4y+2(y+7)=28 | | 3(-+x)-5x=4+8 | | 4(c-5)=46 | | (10x+17)+(5x)=87 | | 4c-5=45 | | 5c-4=45 | | 5(c-4)=45 | | 17.95+24x=18.95+18x | | 3y+36+2y=8 | | 17.95+24x=18.95+18 | | 6(s-27.50)=17.50 | | 27.50s-6=17.50 | | 6s-27.50=17.50 |